
Page 1 of 37

AT&T Natural Voices
Text-To-Speech Engines
Version 5.1.1 for Linux

Developer’s Guide

 2001-2020 by AT&T, All rights reserved. Natural Voices is a registered trademark of AT&T
Corporation. IBM is a registered trademark of International Business Machines Corporation. Microsoft is a
registered trademark and Windows, Visual Basic, and Visual C++ are trademarks of Microsoft
Corporation. Pentium is a trademark of Intel Corporation. Windows NT is a registered trademark of
Microsoft Corporation. Sun Microsystems Solaris is a trademark of Sun Microsystems, Inc. Sparc is a
registered trademark of Sparc International, Inc. Intel is a registered trademark of Intel Corporation.

Page 2 of 37

Table of Contents

1. Introduction

2. Minimum Requirements

3. Installation

4. Using the Server Edition

5. Using the Desktop Edition

6. Client C++ SDK

• Getting Started
• Programming Conventions
• Creating an Engine
• Receiving Engine Notifications and Messages
• Initializing and Shutting Down the Engine
• Setting the Voice
• Setting the Audio Format
• Speaking Text
• Setting Volume and Rate
• Stopping the Engine
• Retrieving Phonetic Transcriptions
• Custom Dictionaries
• Optional Operating System Specific Classes

7. SSML Control Tags

8. Custom Dictionaries

9. Phonetic Alphabets

• DARPA US English
• SAMPA Spanish

Page 3 of 37

1. Introduction

About the TTS Engine

AT&T Natural Voices Text-to-Speech (TTS) Engines provide synthesis services in multiple languages for
application builders. The TTS engine runs on both single and multi-processor computers.

The AT&T Natural Voices TTS product is currently available in two configurations: the Server Edition and
the Desktop Edition. The Server Edition provides a scalable, client/server architecture that’s ideal for
supporting many simultaneous client connections to a single server or a large server farm of TTS servers.
The Desktop Edition provides the same AT&T Natural Voices TTS technology on a desktop computer and
limits the TTS engine to a single channel.

The AT&T Natural Voices supports US English and Spanish. You can mix languages in a single input file
by specifying the voice to use to speak the text. Note that any voice will attempt to speak whatever text is
presented, i.e. Rosa (Spanish) will attempt to synthesize English text as Spanish words.

AT&T Natural Voices TTS engines allow you to mix languages on a single server simply by specifying a
different voice. Users can specify a voice and language in an SSML control tag that is included in the
input text or make C++ API calls to switch between voices and languages seamlessly. This architecture
also allows you to deliver new voices in a variety of languages with a single TTS engine executable.

8 KHz and 16 KHz versions of all voices are available separately. The 8 KHz voices are ideally suited for
telephony applications. The 16 KHz voices offer higher quality output for desktop applications including
web site applications and wav files. You can install any combination of 8 KHz and 16 KHz voices on a
single server.

For Developers

Both editions include a C++ language SDK that allows application developers to control the TTS engine.
The Client SDK provided with the product includes source code for sample applications that demonstrates
how applications interact with the TTS engine.

The TTS engines support the Speech Synthesis Markup Language (SSML) component of the Voice XML
standard. This markup language allows client applications to include special instructions within the input
text that may change the default behavior of the text synthesizer (not all features are supported in all
languages).

Page 4 of 37

2. Minimum Requirements

Hard Drive Space

All editions of the AT&T Natural Voices require less than 50 MB of disk space (without voice fonts).

Disk requirements of voice fonts vary. Generally, 8 KHz voice fonts require between 150 MB and 200 MB
of hard drive space per font, while 16 KHz voice fonts require between 500 MB and 900 MB per font.

You will require some additional space to store server logs if running the Server Edition.

Memory

All editions require 256 MB RAM minimum but 512MB RAM is recommended. Extra memory will provide
better performance for all editions if you use the TTS engine while other applications are running.

Also note that each voice requires about 75 MB of data to be accessed by the server so we recommend
that you have at least 1 GB of memory per server CPU if you start more than one voice.

The Server Edition memory requirements grow depending on a number of channels – each additional
channel requires an additional 10 MB RAM.

Test Results

Our test results show that a Server Edition running on a 500 MHz Intel Pentium-III processor with 512 MB
of memory can support around 32 simultaneous channels of TTS with reasonable performance.

The Server Edition running on a 1 GHz Intel Pentium-4 with 1 GB of memory supports about 48
simultaneous channels of TTS.

In both cases, the TTS server computer is not running any other applications.

Page 5 of 37

3. Installation

You may keep either edition of AT&T Natural Voices in any directory. However, samples in this manual
assume that AT&T Natural Voices reside under /usr/local.

Desktop Edition

The tar file will unpack into a single directory called att_naturalvoices_v5.1_desktop. You may
safely unpack the tar file in any directory. To extract the files from the tar file, use the command:

tar -xvf att_naturalvoices_v5.1_desktop_live.tar , or
tar -xvf att_naturalvoices_v5.1_desktop_trial.tar

Server Edition

The tar file will unpack into a single directory called att_naturalvoices_v5.1_server. You may
safely unpack the tar file in any directory. To extract the files from the tar file, use the command:

tar -xvf att_naturalvoices_v5.1_server_live.tar , or
tar -xvf att_naturalvoices_v5.1_server_trial.tar

The server edition has both server and client components within. If you need to access the engine from
another computer, copy the following client components onto that computer:

1. File: <INSTALL_DIR>/bin/TTSClientPlayer
2. File: <INSTALL_DIR>/bin/TTSClientFile
3. Directory: <INSTALL_DIR>/sdk (if you build C applications)

Evaluation Version

The evaluation version of AT&T Natural Voice TTS Engines limits usage to a certain number of days.
Every time when it is used, the TTS engine will output a message telling you how many trial days are left.
An Internet connection is needed for the evaluation version to work.

If you have the evaluation version of either the desktop or server edition, you have to do the following
before you attempt to use AT&T Natural Voices for a first time:

1. Locate the order number, which can be found on the invoice sent by Wizzard Software Corp.
2. Create a file named order.txt and type the order number (10 digits) into that file.
3. Save order.txt into the directory <INSTALL_DIR>/bin.

Please note that if you will be executing AT&T Natural Voices binaries from directories other than
<INSTALL_DIR>/bin, then you will need to copy order.txt into CWD as well.

Install Voice Font(s)

Your desktop and/or server edition should have one or more voice fonts installed before you attempt to
use it for a first time. Each voice font is packaged separately. The desktop and server editions use the
same fonts.

The voice font tar file will unpack files into a single directory. To install a voice font, simply copy all the

Page 6 of 37

extracted files into the appropriate directory (see Table of Fonts, below).

Here is an installation example for the voice font Mike 8 KHz (US English) and Rosa 16 KHz (Spanish):

tar -xvf att_naturalvoices_v5.1_mike8.tar
tar -xvf att_naturalvoices_v5.1_rosa16.tar
cp mike8/* /usr/local/att_naturalvoices_v5.1_server/data/en_us/mike8
cp rosa16/* /usr/local/att_naturalvoices_v5.1_server/data/es_us/rosa16

To complete a voice font installation, you will need to adjust the configuration file named tts.cfg and
located in the directory <INSTALL_DIR>/data. Uncomment the font that you have installed.
Commented lines have double pound (##) in the beginning of the line, while uncommented lines have a
single pound (#) in the beginning of the line.

Continuing the above example, you would need to replace following lines:

##include "en_us/mike8/mike8.cfg"
##include "es_us/rosa16/rosa16.cfg"

With this:
#include "en_us/mike8/mike8.cfg"
#include "us_us/rosa16/rosa16.cfg"

Table of Fonts

Replace * with either 8 or 16, depending on voice font type.

Language Name Location

US English Mike M <INSTALL_DIR>/data/en_us/mike*

 Crystal F <INSTALL_DIR>/data/en_us/crystal*

 Rich M <INSTALL_DIR>/data/en_us/rich*

 Ray M <INSTALL_DIR>/data/en_us/ray*

 Claire F <INSTALL_DIR>/data/en_us/claire*

 Julia F <INSTALL_DIR>/data/en_us/julia*

 Lauren F <INSTALL_DIR>/data/en_us/lauren*

 Mel M <INSTALL_DIR>/data/en_us/mel*

Spanish Alberto M <INSTALL_DIR>/data/es_us/alberto*

 Rosa F <INSTALL_DIR>/data/es_us/rosa*

Page 7 of 37

Distribution Components

Please note that if you have created an application using our client C++ SDK then you will need to
recompile your executables with the libraries from the live version. Those libaries could be found in:

<INSTALL_DIR>/sdk/lib

64-bit Components

Your desktop and/or server edition includes 64-bit components. Following list represents the location of
such files. You can replace 32-bit components with their 64-bit versions if you prefer to use and/or
redistribute your program on a 64-bit machine.

Directory Distribution

<INSTALL_DIR>/bin Distribute only files which you use within your application.
Always use files from the live version.
Always distribute TTSServer (applies to Server Edition only).

<INSTALL_DIR>/lib Always distribute files from this directory.
These files are the same for evaluation and live versions.

<INSTALL_DIR>/data Always distribute this directory and all files and sub-directories within.
Make sure you install purchased voice fonts before distribution.

<INSTALL_DIR>/docs Do not distribute this directory.

<INSTALL_DIR>/sdk Do not distribute this directory.

32-bit Components 64-bit Components

<INSTALL_DIR>/bin <INSTALL_DIR>/bin64

<INSTALL_DIR>/lib <INSTALL_DIR>/lib64

<INSTALL_DIR>/sdk/lib <INSTALL_DIR>/sdk/lib64

Page 8 of 37

4. Using the Server Edition

The AT&T Natural Voices Server Edition supports a client/server architecture where the client and server
executables run on the same or different computers.

Running the Server

TTSServer -c connectionPort [-r path] [-x voice] [-v[0|1|2|3]] [-config file]
[-m max_clients] [-y port_no] [-temp path] [-if interface] [-wd #] [-l file]
[-rollover N [unit]]

Option Argument Action

-c Connection port Required field. Identifies the port on which TTSServer will be
listening for client connections. Note that the client application
must be configured to use this same port.

-r Path name The directory path of the data subdirectory.
Default path is $NaturalVoicesPath

-x Voice font Specify the voice: mike8, crystal16, etc.

-v0 Trace level 0 Prints only error messages.

-v1 Trace level 1 Prints error messages, voice information, and process
start/stop information. This is a default.

-v2 Trace level 3 Prints error messages, voice information, process start/stop
information, and request and reply packets. Beware that v2
mode generates extensive information and should be used
sparingly.

-v3 Trace level 3 Prints error messages, voice information, process start/stop
information, request and reply packets, and all notifications.
Beware that v3 mode generates extensive information and
should generally not be used.

-config Configuration file Default is <INSTALL_DIR>/data/tts.cfg

-m Number of clients Maximum number of simultaneous clients. Attempts to
allocate additional channels will fail. Default is 32.

-y SNMP Port Access this port for SNMP.

-temp Path name Use the given path for temporary files (default is /tmp)

-if Interface Bind to specified network interface

-wd # Allow # timeout intervals before disconnecting client

-l Log file path File where messages are logged. Default is stdout.

-rollover N [unit] Rollover log file after N minutes (or specify unit of time (hours,
minutes, days, weeks))

Examples:

/usr/local/att_naturalvoices_v5.1_server/bin/TTSServer –c 7000 -l tts.log –x
mike8 –r /usr/local/att_naturalvoices_v5.1_server/data

NaturalVoicesPath=/usr/local/att_naturalvoices_v5.1_server/data
export NaturalVoicesPath
/usr/local/att_naturalvoices_v5.1_server/bin/TTSServer –c 7000

Page 9 of 37

Running the Client

Once the server is up and running, you can send text to the TTS server to try it out. You can write your
own application in C++ or you can use the sample applications TTSClientPlayer and TTSClientFile, which
can be found in the <INSTALL_DIR>/bin directory. TTSClientPlayer allows you to synthesize text files and
play them through a sound card. TTSClientFile synthesizes text files and writes the linear 16 bit PCM
output as a wav file.

TTSClientPlayer –p connectionPort –s TTSServer [-v[0|1|2|3]] [-transcribe]
[-a] [-ssml] [-latin1] [-f inputFile | -l fileList] [-du userDictionary] [-da
applicationDictionary] [-mulaw] [-normalize] [-queue]

TTSClientFile –p connectionPort –s TTSServer [-v[0|1|2|3]] [-transcribe] [-a]
[-ssml] [-latin1] [-f inputFile | -l fileList] [-du userDictionary] [-da
applicationDictionary] [-mulaw] [-normalize] [-queue] -o outputFile

Option Argument Action

-p Connection port Required field. Identifies the port number on which
TTSServer will be listening for client connections.

-s Server name Required field. Specify the name or IP address of the TTS
server. Use localhost if server is on the same PC.

-v Verbose output (0-3) 3 is default. Use -v0 for no output; -v3 for max output.

-transcribe None Perform a transcription instead of speaking.

-normalize None Same as above, but with fully normalized text

-a None Use asynchronous engine behavior.

-x Default voice font Specify the voice: mike8, crystal16, etc.

-ssml None Parse the input files as SSML.

-latin1 None Assume Latin-1 input (default encoding is UTF-8).

-f Input file name Path of the text file to synthesize.

-l File with a list of files Specify a file with a list of text files to synthesize.

-du User dictionary file Specify a user dictionary file.

-da Application dictionary
file

Specify an application dictionary file.

-o Audio output file The output audio file (TTSClientFile only).

-mulaw None Generate mulaw audio output

-queue None Queue all speak requests at once.

Following sample synthesizes sample.txt using the TTS server running on the local machine and listening
on port 7000 and writes the audio to a sound card:

/usr/local/att_naturalvoices_v5.1_server/bin/TTSClientPlayer –p 7000 –s
localhost –f sample.txt

Following sample synthesizes the text in sample.txt, capturing the audio output to sample.wav:

/usr/local/att_naturalvoices_v5.1_server/bin/TTSClientFile –p 7000 –s
localhost –f sample.txt –r 22050 -o sample.wav

Page 10 of 37

Generated Output Messages

Server Output and Error Messages

The TTS Server writes all output and error messages to the log file specified with the –l option.
All messages have the format
 Wire#child time message
e.g. Wire#1 171.90 : wireline started
where child# is a sequential number of speak requests, where each speak request creates a new child
process and time is the number of seconds since the server started.

Initialization Messages

The following messages are generated by the TTS Server during initialization. These set of messages
indicate that a wireline server started up. Wireline is the application itself, server engine is the thread that
receives wireline requests and sends wireline replies, the asynch notify server is the thread that sends
wireline notifications, and the asynch standalone is the thread that processes speak requests.
Wire#1 171.90 : wireline started
Wire#1 171.91 : server engine started
Wire#1 172.81 : asynch notify server started
Wire#1 172.85 : asynch standalone started

Shutdown Messages

The following messages are generated by the TTS Server during shutdown and map directly to the
corresponding Server Initialization Messages.
Wire#1 177.56 : asynch standalone finished
Wire#1 177.56 : asynch notify server finished
Wire#1 177.56 : server engine finished
Wire#1 177.60 : wireline finished

Voice Inventory Messages

The following messages enumerate the voices that are available on the Server, the default voice and the
current voice:
Wire#1 172.93 : Installed voices
mike8;en_us;male;adult;8000;16;pcm;
klara16;de_de;female;adult;16000;16;pcm;
Wire#1 172.94 : Default voice: mike8;en_us;male;adult;8000;16;pcm;
Wire#1 172.94 : Current voice: klara16;de_de;female;adult;16000;16;pcm;

Client Messages

These messages may be displayed when a client disconnects from the server unexpectedly.
Wire#1 368.83 : receive error 10054 ::Connection reset by peer
Wire#1 368.83 : sending notify packet::Connection reset by peer
Wire#1 368.90 : wireline finished::Connection reset by peer
Periodically, the server will clean up resources for child processes that have exited.
TTSWireServer 395.02 : reaped child 1
These messages are simply housekeeping messages and can be ignored.

Page 11 of 37

5. Using the Desktop Edition

TTSStandalonePlayer and TTSStandaloneFile are included in the <INSTALL_DIR>/bin directory.
TTSStandalonePlayer allows you to synthesize text files and play them through a sound card.
TTSStandaloneFile synthesizes text files and writes output to a file.

TTSStandalonePlayer [-v[0|1|2|3]] [-transcribe] [-a] [-ssml] [-latin1] [-f
file | -l filelist] [-du userdictionary] [-da appdictionary] [-x voice_name]
[-normalize] [-mulaw] [-data path] [-root path] [-config path] [-queue]

TTSStandaloneFile [-v[0|1|2|3]] [-transcribe] [-ssml] [-latin1] [-f file | -l
filelist] [-du userdictionary] [-da appdictionary] [-x voice_name] [-mulaw] [-
a] [-normalize] [-data path] [-root path] [-config path] [-queue] –o file

Option Argument Action

-v Verbose output (0-3) 3 is default. Use -v0 for no output; -v3 for max output.

-transcribe None Perform a transcription instead of speaking.

-normalize None Same as above, but with fully normalized text

-a None Use asynchronous engine behavior.

-ssml None Parse the input files as SSML.

-latin1 None Assume Latin-1 input (default encoding is UTF-8).

-f Input file name Path of the text file to synthesize.

-l File with a list of files Specify a file with a list of text files to synthesize.

-du User dictionary file Specify a user dictionary file.

-da Application dictionary file Specify an application dictionary file.

-x Default voice font mike8, crystal16, etc.

-o Audio output file The output audio file (TTSStandaloneFile only).

-mulaw None Generate mulaw audio output

-data Path name The directory path of the data subdirectory

-root Path name The directory path of the bin subdirectory

-config Configuration file Default is <INSTALL_DIR>/data/tts.cfg

-queue None Queue all speak requests at once.

Following sample synthesizes the text in sample.txt, capturing the audio output to sample.wav.

/usr/local/att_naturalvoices_v5.1_desktop/bin/TTSStandaloneFile –x rosa8 –f
sample.txt –data /usr/local/att_naturalvoices_v5.1_desktop/data -o sample.wav
–root /usr/local/att_naturalvoices_v5.1_desktop/bin

Following sample synthesizes the text in sample.txt and writes the audio to a sound card:

/usr/local/att_naturalvoices_v5.1_desktop/bin/TTSStandalonePlayer –x mike8 –f
sample.txt –data /usr/local/att_naturalvoices_v5.1_desktop/data –root
/usr/local/att_naturalvoices_v5.1_desktop/bin

Page 12 of 37

6. Client C++ SDK

The AT&T Natural Voices TTS package includes a Software Developers Kit (SDK) for building client applications
that work with the TTS server. The SDK contains C++ class definitions, libraries and sample applications that
demonstrate the use of the SDK. The Server and Desktop Editions of the AT&T Natural Voices use the same SDK.
The only difference between using the SDK with the two Editions is in selecting the engine model when creating the
engine.

6.1. Getting Started

SDK Headers

There is only one header required for inclusion in a speech synthesis application. The header file TTSApi.h
contains all the necessary C++ classes. Alternatively, an application can include an operating system-specific
header, TTSWin32API.h for Windows or TTSUnixAPI.h for UNIX, which contains some additional classes that may
be useful for building applications. TTSWin32API.h and TTSUnixAPI include the header file TTSApi.h.

Header Description

TTSApi.h Contains all the necessary C++ classes, definitions and functions. Also
includes the headers TTSResult.h and TTSOSMacros.h

TTSWin32API.h Contains some optional Windows-specific C++ classes, headers and
definitions. Includes TTSApi.h

TTSUnixAPI.h Contains some optional Unix-specific C++ classes, headers and definitions.
Includes TTSApi.h

TTSResult.h This file contains the result codes that are returned from the SDK C++ classes
and functions

TTSOSMacros.h This file contains operating system-specific macros necessary to provide
thread-safe access to the SDK C++ classes.

TTSUTF8.h This file contains string functions that handle UTF-8 strings.

Compiler Definitions

The following preprocessor definitions should be used when integrating the SDK with an application.

Operating System Definitions

Windows WIN32

Linux UNIX

SDK Libraries

Those libraries are built with the GNU g++ compiler and use pthread functionality. An application must
also link with libpthread.a.

Library AT&T Natural Voices

libTTSAPICS.a Server Edition

libTTSAPISA.a Desktop Edition

Page 13 of 37

6.2. Programming Conventions

Return Codes

The header TTSResult.h defines a result code type called TTS_RESULT and all the possible values it may
contain. Most of the C++ global and class member functions return a TTS_RESULT code. An application may
use the macros FAILED() and SUCCEEDED() to determine if a function failed or succeeded. There is also a
static class CTTSResult that will return a descriptive English-language string for the result code. For example:

TTS_RESULT result = ttsCreateEngine(...);
if (FAILED(result)) {
 cout << CTTSResult::GetErrorString(result);
}

CTTSRefCntObject

All of the SDK C++ classes derive from the CTTSRefCntObject class. This class is used to provide reference
counting for classes and manage pointers to the classes. When a class object is created, its reference count is
zero. An application should call CTTSRefCntObject::AddRef for every pointer to a class object it needs to obtain.
CTTSRefCntObject::AddRef increases the reference count of the class by one.

An application should call CTTSRefCntObject::Release when it is finished with a pointer to a class object.
CTTSRefCntObject::Release decreases the reference count of the object by one. When the reference count is
zero, the object will free itself from memory. These calls are symmetrical, for every CTTSRefCntObject::AddRef
there should be a CTTSRefCntObject::Release.

UTF-8 Strings

The SDK supports only UTF-8 strings as both input and output. UTF-8 is a multibyte character encoding. Its
major advantage is that it allows encoding of 7-bit US-ASCII characters in a single byte, thus allowing existing
US-ASCII text data to be read as UTF-8 without modification. The application should be conscious of functions
within the SDK that receive or return text in UTF-8 format. The header TTSApi.h defines some type definitions
for UTF-8 strings.

typedef unsigned char UTF8String;
typedef unsigned char * PUTF8String;
typedef const unsigned char * PCUTF8String;

C++ Standard Template Library

Some of the TTS SDK class functions use C++ Standard Template Library (STL) list, vector, and string
container classes. Developers should be familiar with using STL classes.

6.3. Creating an Engine

The SDK is the same for the Server and Desktop Editions of the AT&T Natural Voices TTS engines. The only
difference in the SDK between Editions is the engine model that is specified during engine configuration.
Creating an engine involves building a TTSConfig structure and calling the library function ttsCreateEngine().

Build a Configuration Structure

The TTSConfig structure contains the information necessary for the SDK library to create a CTTSEngine object.

Page 14 of 37

TTSConfig Description

M_eEngineModel Indicates which engine model to create:
TTSENGINEMODEL_CLIENTSERVER – a client/server engine model. The SDK
will determine what protocol the server is running. Server Edition only.
TTSENGINEMODEL_STANDALONE – a standalone engine model. This supports
only one instance of the Natural Voices engine per process. Desktop Edition only.

M_eEngineBehavior Determines the behavior of the engine:
TTSENGINE_SYNCHRONOUS – the behavior is the same for all function calls as
in the asynchronous mode except the CTTSEngine::Speak()call which will not
return until all the audio and other notifications have been sent to the application’s
CTTSSink class.
TTSENGINE_ASYNCHRONOUS – the engine will return after fully completing a
function call. Most affected is the CTTSEngine::Speak() call which will return
before all audio and other notifications have been sent to the applications
CTTSSink class.
TTSENGINE_MESSAGEBASED – the engine will return immediately from all
function calls. The application should rely on the CTTSSink notification to
determine if the call was successful or not.

M_strDataDirectory This field is only applicable to the TTSENGINEMODEL_STANDALONE engine
models. It is an override to where the voice data is located.

M_strTempDirectory This is an optional field that tells the SDK where to store temporary files.

The TTSServerConfig structure is a description of a server, port and timeout that the client/server engine
will use to connect to a TTS server. This structure is appropriate only for the
TTSENGINEMODEL_CLIENTSERVER engine models.

TTSServerConfig Description

M_nServerPort The TTS server engine port to which the SDK should connect.

m_tvTimeout The timeout value the SDK should use while communicating with a TTS server.
If the application sets the timeval to {0, 0} the SDK will use an appropriate
default.

m_szServer The TTS server to which the SDK should connect. It can either be a DNS name
or an explicit IP address.

All the engine modes and behaviors are multi-thread safe. The TTSENGINE_ASYNCHRONOUS engine is for
applications that need to ensure that function calls return the result from the TTS server before returning control
to the application. In addition, they rely on separate threads in the SDK to process notification and audio data
from the TTS server. The TTSENGINE_SYNCHRONOUS engine is for applications that do not want extra
threads running in the system and need CTTSEngine::Speak() calls to run to completion before returning. The
TTSENGINE_MESSAGEBASED engine is for applications that run in a state machine and rely on the
asynchronous notifications in the CTTSSink to drive the application.

Creating an Engine

The process for creating an engine is slightly different for the AT&T Natural Voices TTS Server Edition than for
the Desktop Editions.

Creating an Engine for the Server Edition

Invoking the ttsCreateEngine() function will result in a CTTSEngine pointer being returned to the application. If
the call is successful, the application should AddRef()the returned CTTSEngine pointer. When the application
no longer needs the CTTSEngine pointer, it should call its Release() member function. The format of the
ttsCreateEngine() function is:

Page 15 of 37

TTS_RESULT ttsCreateEngine(CTTSEngine **ppEngine, const TTSConfig &ttsConfig);
CTTSEngine *pEngine = 0;
TTSConfig ttsConfig;
TTSServerConfig ttsServerConfig;
// Setup our server configuration
ttsServerConfig.m_nServerPort = nPort;
ttsServerConfig.m_szServer = pszServer;
ttsServerConfig.m_tvTimeout.tv_sec = 15;
ttsServerConfig.m_tvTimeout.tv_usec = 0;
// Setup our configuration
ttsConfig.m_eEngineModel = TTSENGINEMODEL_CLIENTSERVER;
ttsConfig.m_eEngineBehavior = TTSENGINE_SYNCHRONOUS;
ttsConfig.push_back(ttsServerConfig);
// Create the engine
result = ttsCreateEngine(&pEngine, ttsConfig);
// Success?
if (result == TTS_OK && this->m_pEngine) {

// AddRef() the engine
 pEngine->AddRef();
 // application continues

 // Release the engine
 pEngine->Release();
}

Creating an Engine for the Desktop Edition

Invoking the ttsCreateEngine() function will result in a CTTSEngine pointer being returned to the application. If
the call is successful, the application should AddRef()the returned CTTSEngine pointer. When the application
no longer needs the CTTSEngine pointer, it should call its Release() member function. The format of the
ttsCreateEngine() function is:

TTS_RESULT ttsCreateEngine(CTTSEngine **ppEngine, const TTSConfig &ttsConfig);

Standalone engine runs within the process space of the application that called ttsCreateEngine(). It is limited to
a single engine instance per process. An attempt to call ttsCreateEngine() for a second standalone engine will
fail, unless the first engine has been released.

CTTSEngine *pEngine = 0;
TTSConfig ttsConfig;
// Setup our configuration
ttsConfig.m_eEngineModel = TTSENGINEMODEL_STANDALONE;
ttsConfig.m_eEngineBehavior = TTSENGINE_SYNCHRONOUS;
// Create the engine
result = ttsCreateEngine(&pEngine, ttsConfig);
// Success?
if (result == TTS_OK && this->m_pEngine) {
 // AddRef() the engine
 pEngine->AddRef();
 // application continues

 // Release the engine
 pEngine->Release();
}

6.4. Receiving Engine Notifications and Messages

Page 16 of 37

CTTSSink Notifications

An application should implement a CTTSSink-derived class and send a pointer to it to the
CTTSEngine::SetSink() function. A CTTSSink object receives TTS notifications such as audio, bookmarks, word
information, and phoneme information. When a CTTSEngine::Speak() function is called, the CTTSEngine object
will send CTTSNotification objects to the application through its CTTSSink pointer.

class CSimpleEngine : public CTTSSink
{
public:
 CSimpleEngine(void)
 :
 CTTSSink()
{
}
virtual TTS_RESULT onNotification(CTTSNotification *pNotification)
{
 switch (pNotification->Notification()) {
 ………
 }
 return TTS_OK;
}
protected:
 virtual ~CSimpleEngine(void)
 {
 }
};

An application tells the SDK which notifications it is interested in receiving by using the
CTTSEngine::SetNotifications() function.

TTSNOTIFY_* definition Description

TTSNOTIFY_STARTED A Speak has started

TTSNOTIFY_NOTIFYCHANGED A notification value has changed

TTSNOTIFY_VOICECHANGED The voice has changed

TTSNOTIFY_AUDIOFORMATCHANGED The audio format has changed

TTSNOTIFY_FINISHED A Speak has finished

TTSNOTIFY_AUDIO Audio data notification

TTSNOTIFY_WORD Word notification

TTSNOTIFY_PHONEME Phoneme notification

TTSNOTIFY_VISEME Viseme notification

TTSNOTIFY_BOOKMARK Bookmark notification

TTSNOTIFY_VOLUME Volume value change

TTSNOTIFY_RATE Speaking rate change

TTSNOTIFY_PITCH Pitch change

When performing a CTTSEngine::SetNotifications() function call, the application specifies which notifications it is
interested in modifying and whether the notification should be turned on or off. For example, the following code
tells the engine that the application wishes to turn on audio and end-of-speech notifications, and to turn off
phoneme notifications:

//Turn audio and finished notifications on and turns phoneme notifications off
TTS_RESULT result = pEngine->SetNotifications(
TTSNOTIFY_AUDIO | TTSNOTIFY_FINISHED | TTSNOTIFY_PHONEME,

Page 17 of 37

TTSNOTIFY_AUDIO | TTSNOTIFY_FINISHED);

Turning off phoneme and viseme notifications can make a dramatic performance improvement because the
events are not generated by the server and then processed by the client. If your application does not require
phonemes or visemes, you can disable them with the following code:

// Turn audio notifications on and turns phoneme and viseme notifications off
TTS_RESULT result = pEngine->SetNotifications(
TTSNOTIFY_AUDIO | TTSNOTIFY_PHONEME | TTSNOTIFY_VISEME,
TTSNOTIFY_AUDIO);

CTTSNotification Object

The CTTSNotification object contains all the information for any type of notification. To determine the type of the
notification, the application should call the CTTSNotification::Notification() function which returns a
TTSNOTIFY_* code.

TTS_RESULT
CmySink::onNotification(CTTSNotification *pNotification)
{
 switch (pNotification->Notification()) {
 case TTSNOTIFY_AUDIO: {
 long lLength;
 if (pNotification->AudioData(&pAudioData, &lLength) == TTS_OK) {
 . . play the audio . .
 }
 break;
 }
 case TTSNOTIFY_FINISHED:
 . . signal that it is finished with a speak call. .
 break;
 case TTSNOTIFY_WORD: {
 TTSWordNotification wordNotification;
 if (pNotification->Word(&wordNotification) == TTS_OK) {
 cout << "WORD: ";
 cout << wordNotification.m_lCharacterOffset;
 }
 break;
 }
 case TTSNOTIFY_BOOKMARK: {
 PCUTF8String szBookmark = 0;
 if (pNotification->Bookmark(&szBookmark) == TTS_OK && szBookmark) {
 cout << "BOOKMARK: " << szBookmark << "\n";
 }
 break;
 }
 case TTSNOTIFY_PHONEME: {
 TTSPhonemeNotification phoneme;
 if (pNotification->Phoneme(&phoneme) == TTS_OK) {
 vector<PCUTF8String>::const_iterator iPhonemes =
 phoneme.m_vPhonemeIDs.begin();
 while (iPhonemes != phoneme.m_vPhonemeIDs.end()) {
 cout << *iPhonemes++;
 }
 cout << " " << phoneme.m_lDuration;
 cout << " " << phoneme.m_lStressLevel;
 }
 break;
 }
 return TTS_OK;

Page 18 of 37

 }

TTSWordNotification structure

The TTSWordNotification structure contains all the information for a word notification.

TTSWordNotification members Description

m_lCharacterOffset Offset in bytes of the word from the beginning of text input.

m_lWordLength The length of the word in bytes.

m_lSentenceLength If this is the first word of a sentence, this is the length of the
sentence in bytes.

m_lWordFlags A bit-field of flags indicating what the word is:
TTSWORDFLAG_SENTENCE
TTSWORDFLAG_PARAGRAPH
TTSWORDFLAG_NOUNPHRASE

m_ucPartOfSpeech The part of speech of the word

TTSPhonemeNotification structure

The TTSPhonemeNotification structure contains all the information for a phoneme notification.

TTSPhonemeNotification members Description

m_vPhonemeIDs This is a vector containing one or more phoneme strings.

m_lDuration The duration of the phoneme string in milliseconds.

m_lStressLevel The stress level of the phoneme string (value between 1 and 3).

CTTSErrorInfoObject

An application may optionally implement a CTTSErrorInfoObject-derived class and send a pointer to it to the
CTTSEngine::SetErrorInfoObject() function. A CTTSErrorInfoObject receives error, information, and trace
messages from the SDK classes and can be useful for debugging and logging information.

class CSimpleEngine : public CTTSErrorInfoObject
{
public:
 CSimpleEngine(void)
 :
 CTTSErrorInfoObject()
 {
}
 virtual TTS_RESULT onErrorMessage(TTS_RESULT error,
const char *pszErrorMessage)
 {
 try {
 cout << pszErrorMessage << "\n";
 cout << CTTSResult::GetErrorString(error) << "\n";
 }
 catch(...) {
 }
 return TTS_OK;
 }
 virtual TTS_RESULT onInformationMessage(
const char *pszInformationMessage)
 {
 try {

Page 19 of 37

 cout << pszInformationMessage << "\n";
 }
 catch(...) {
 }
 return TTS_OK;
 }
 virtual TTS_RESULT onTraceMessage(int nTraceLevel,
const char *pszTraceMessage)
 {
 try {
 cout << pszTraceMessage << "\n";
 }
 catch(...) {
 }
 return TTS_OK;
 }
protected:
 virtual ~CSimpleEngine(void)
 {
 }
};

6.5. Initializing and Shutting Down the Engine

After creating a CTTSEngine object, the application must call the CTTSEngine::Initialize() function. If the
CTTSEngine::Initialize() call returns a successful status code, then the application must call
CTTSEngine::Shutdown() when it is finished with the CTTSEngine object.
These calls must be symmetrical, for every CTTSEngine::Initialize() there should be a
CTTSEngine::Shutdown().

// Initialize the engine
TTS_RESULT result = pEngine->Initialize();
if (SUCCEEDED(result)) {
 . . . speak etc.

 // we are done, so shut down the engine
 pEngine->Shutdown();
}

6.6. Setting the Voice

TTSVoice Structure

An application uses a TTSVoice structure to enumerate, set or query the current voice the engine is using.

TTSVoice member Description

m_nGender Indicates the gender. The possible values:
TTSGENDER_DEFAULT – use the default gender
TTSGENDER_MALE – male voice
TTSGENDER_FEMALE – female voice

m_nAge Indicates the TTSAge enumeration. The possible values are:
TTSAGE_CHILD – child voice
TTSAGE_TEEN – teenage voice
TTSAGE_ADULT – adult voice

Page 20 of 37

TTSAGE_SENIOR – senior voice

m_szName The name of the voice. If this is “”, then the default voice will be used.

m_szLocale This is the language locale (“en_us”, “es_us”, etc) for the voice. If this is “”,
then the default locale will be used.

m_nSampleRate This the sample rate of the voice, either 8000Hz or
16000Hz. Both are 16 bit PCM.

Enumerating the Voices

An application can find out how many voices are available by calling the CTTSEngine::NumVoices function and
can then enumerate their characteristics using the CTTSEngine::EnumVoice function.

// How many voices are there?
int nVoices = 0;
TTS_RESULT result = pEngine->NumVoices(&nVoices);
if (SUCCEEDED(result) && nVoices) {
 for (int i = 0; i < nVoices; i++) {
 TTSVoice voice;
 result = pEngine->EnumVoice(i, &voice);
 if (SUCCEEDED(result)) {
 cout << voice.m_szName;
 }
 }
}

Setting the Voice

An application can set the voice using the CTTSEngine::SetVoice function. The application should be aware that
the returned voice may not be exactly what the application desired. The SDK will select the closest supported
voice for the supplied TTSVoice structure. The application may check the returned TTSVoice structure to
determine the characteristics of the actual voice selected by the SDK.

// Set the male voice
TTSVoice voice, voiceReturned;
voice.m_nGender = TTSGENDER_MALE;
TTS_RESULT result = pEngine->SetVoice(&voice, &voiceReturned);
if (SUCCEEDED(result)) {
 // Did it really change it?
 if (voiceReturned.m_nGender == TTSGENDER_MALE) {
 // Yes!
 }
}

6.7. Setting the Audio Format

TTSAudioFormat Structure

An application uses a TTSAudioFormat structure to enumerate, set or query the current audio format the engine
is using.

TTSAudioFormat member Description

m_nType Indicates the type of audio format. Possible values are:
TTSAUDIOTYPE_DEFAULT – the default format. For the current
server, the default format is TTSAUDIOTYPE_LINEAR.

Page 21 of 37

TTSAUDIOTYPE_MULAW - this is CCITT g.711 mulaw
TTSAUDIOTYPE_LINEAR – this is linear PCM
TTSAUDIOTYPE_ALAW - this is CCITT g.711 alaw

m_nSampleRate This is the sample rate. Set it to 0 to use the default sample rate in
samples per second for the selected audio type. This will be either
8000 or 16000.

m_nBits This is the number of bits per sample. Set it to 0 to use the default
number of bits. For the current server, this will either be 8 or 16 bits.

m_nReserved This is reserved field, please do not use it.

Enumerating the Audio Formats

An application can find out how many audio formats there are by calling the CTTSEngine::NumAudioFormats
function and can then enumerate their characteristics using the CTTSEngine::EnumAudioFormat function.

// How many audio formats are there?
int nFormats = 0;
TTS_RESULT result = pEngine->NumAudioFormats(&nFormats);
if (SUCCEEDED(result) && nFormats) {
 for (int i = 0; i < nFormats; i++) {
 TTSAudioFormat format;
 result = pEngine->EnumAudioFormat(i, &format);
 if (SUCCEEDED(result)) {
 cout << format.m_nType;
 }
 }
}

Setting the Audio Format

An application can set the audio format using the CTTSEngine::SetAudioFormat function. The application
should be aware that the returned audio format may not be exactly what the application desired. The SDK will
select the closest supported audio format for the TTSAudioFormat structure supplied by the application. The
application may check the returned TTSAudioFormat structure to determine the characteristics of the actual
audio format selected by the SDK.

// Set to linear PCM
TTSAudioFormat format, formatReturned;
format.m_nType = TTSAUDIOTYPE_LINEAR;
TTS_RESULT result = pEngine->SetAudioFormat(&format, &formatReturned);
if (SUCCEEDED(result)) {
 // Did it really change it?
 if (formatReturned.m_nType == TTSAUDIOTYPE_LINEAR) {
 // Yes!
 }
}

6.8. Speaking Text

An application speaks text using the CTTSEngine::Speak() function. If the application has created a
TTSENGINE_SYNCHRONOUS engine then the CTTSEngine::Speak() call will not return until all the audio and
other notifications have been sent to the CTTSSink object. If the application has created a
TTSENGINE_ASYNCHRONOUS engine then the CTTSEngine::Speak() call will return immediately.
Applications using the asynchronous model optionally get a TTSSPEAKHANDLE when making a
CTTSEngine::Speak call which can be used to associate Notifications with a particular asynchronous Speak call.

Page 22 of 37

An application can queue multiple speak requests by calling the CTTSEngine::Speak() function multiple times.

Speaking Text

The SDK requires UTF-8 character input for internationalization. The SDK supports SSML text markup
languages. The application uses the CTTSEngine::SpeakFlags argument of the CTTSEngine::Speak() call to tell
the SDK what kind of text the application is sending.

CTTSEngine::Speak Flags Description

sf_default Default text string with no tags or XML information.

sf_sapixml SSML formatted text.

// Speak some text
string szText = “hello!”;
TTS_RESULT result = pEngine->Speak((PUTF8String) szText.c_str(),
CTTSEngine::sf_default);
if (FAILED(result)) {
 cout << CTTSResult::GetErrorString(result);
}

Speaking CTTSTextFragment objects

The SDK also supports speaking CTTSTextFragment objects. The application implements a
CTTSTextFragment derived object and passes a list of CTTSTextFragment objects to the SDK through the text
fragment version of the CTTSEngine::Speak(const list<CTTSTextFragment *> &lstFragments) call. When
passed a list of fragments, the SDK will interpret the CTTSTextFragment object and call its functions to retrieve
information pertaining to the fragment.

A CTTSTextFragment object describes a fragment of text. Each fragment has an action which determines how
to interpret the data within the fragment.

CTTSTextFragment::Actions Description

a_speak The fragment contains text to speak. The member functions are
interpreted as follows:

Text() The text to speak.

TextLength() The length of the text.

TextOffset() The offset of the text from the beginning of the
original text buffer.

PartOfSpeech() The part of speech for the text.

EmphasisAdjustment() Is the text emphasized or not?

RateAdjustment() Speech rate adjustment for the text above or
below normal rate.

VolumeAdjustment() Speech volume adjustment for the text above or
below normal rate.

PitchAdjustment() Speech pitch adjustment for the text above or
below the normal pitch.

Context() Context flags for interpreting the text.

a_silence The fragment contains silence. The member functions are interpreted
as follows:

Silence() Milliseconds of silence to insert.

a_pronounce The fragment contains text with an associated phonemic
pronunciation. The member functions are interpreted as for a_speak
with the addition of:

Page 23 of 37

PhonemeIDs() DARPA phonemes that indicate the pronunciation
to use for the given text.

a_bookmark The fragment contains a bookmark. The member functions are
interpreted as follows:

Text() The ID of the bookmark.

TextLength() The length of the bookmark.

TextOffset() The offset in bytes from the beginning of the
original text buffer.

a_spell The fragment contains text to spell. The member functions are
interpreted as for a_speak.

a_section The fragment contains a section of text.
Not currently implemented.

6.9. Setting Volume and Rate

An application can change the default speaking volume and rate with the CTTSEngine::SetVolume() and
CTTSEngine::SetRate() functions. These functions may be called from a separate thread or from within the
same thread.
Volume is expressed as a percentage of the normal speaking volume of a voice. The default value is 100, but
can range from 0 to 500. Note: Setting the volume above 200 may result in distortion of the voice.
Speaking rate is expressed on a logarithmic scale from –18 to 18, representing 1/8 the normal rate to 8 times
the normal rate. The default value of 0 indicates the normal speaking rate of the voice.

// Rate and volume adjustment
pEngine->SetRate(-10); // Approximately 1/3 normal rate
pEngine->SetVolume(25); // ¼ normal speaking volume
pEngine->Speak((PCUTF8String)”A slow whisper”, 14, CTTSEngine::sf_default);
pEngine->SetRate(10); // Approximately 3 times normal rate
pEngine->SetVolume(200); // twice normal speaking volume
pEngine->Speak((PCUTF8String)”A quick shout!”, 14, CTTSEngine::sf_default);

6.10. Stopping the Engine

An application may call the CTTSEngine::Stop() function to stop the engine from speaking text. All queued
speaking requests will be stopped. This function may be called from a separate thread or from within the same
thread.

// Stop speaking
TTS_RESULT result = pEngine->Stop();

6.11. Retrieving Phonetic Transcriptions

You may wish to find the phonetic transcription of a word or phrase to use to modify or create a new dictionary
item. If you’re not a linguist, it may be easiest to retrieve the phonetic transcription of a word or phrase from the
TTS engine.

TTSTranscription myTranscription;
myTranscription.m_utfWord = "frog";
TTS_RESULT res = pEngine->Transcribe(myTranscription);
if (SUCCEEDED(res)) {
 cout << myTranscription.m_utfTranscription;

Page 24 of 37

}

6.12. Custom Dictionaries

An application can specify pronunciations to be used while speaking text through the use of custom dictionaries.
A dictionary is a list of entries consisting of a word, and one or more phonemic pronunciations for that word.
The format of a dictionary entry is as follows:

Word {phone1-1 phone1-2 phone1-3 …}(/part-of-speech) {phone2-1 …}

The “Word” is the textual representation of the word whose pronunciation is being specified. It is followed by
one or more transcriptions. A transcription consists of an open brace ({) followed by a space-separated list of
DARPA phoneme names for English words or SAMPA phoneme names for words of all other languages. The
last phoneme is followed by a closing brace (}). This may be optionally followed by a slash (/) and a part of
speech designation, (noun, verb, modifier, function, or interjection). If a part of speech is present, that
pronunciation will only be used for words whose part of speech matches. Here is a small sample dictionary:

// Sample Dictionary
tomato {t ow – m ey 1 t ow}
lead {l iy d} {l eh d}/noun

Dictionaries are managed through the following set of member functions in the CTTSEngine class.

Creating a Dictionary

An application creates a dictionary with the CTTSEngine::CreateDictionary() function. The application supplies a
name by which the dictionary can be referenced, a weight, used to specify the order in which dictionaries are
sorted, (the higher the weight, the earlier the dictionary is searched), and the contents of the dictionary.

// Creating a dictionary – Be sure to surround the phonemes with curly braces
PCUTF8String pszMyDictionary = “\n\
tomato {t ow – m ey 1 t ow}\n\
lead {l iy d} {l eh d}/noun\n\
“;

PCUTF8String pszMyDictName = “MyDictionary”;

TTS_RESULT result = pEngine->CreateDictionary(pszMyDictName, 0, pszMyDictionary,
(PCUTF8String)"att_darpabet_english");

Updating a Dictionary

Once a dictionary has been created by an application, it can add and replace transcriptions using the
CTTSEngine::UpdateDictionary() function.

// Updating a dictionary
PCUTF8String pszMyDictionaryUpdate = “\n\
tomato {t ow – m aa 1 t ow}\n\
potato {p ow – t ey 1 t ow}\n\
“;

TTS_RESULT result = pEngine->UpdateDictionary(pszMyDictName,
szMyDictionaryUpdate);

Clearing and Deleting a Dictionary

Page 25 of 37

An application can clear all entries from a dictionary with the CTTSEngine::ClearDictionary() function. This
leaves the dictionary in place with its current weight, but removes all entries from the dictionary. This call is
useful if the application plans to completely replace the contents of a dictionary without losing its position in the
dictionary search list. If an application is completely finished using a dictionary, it can be completely removed
with the CTTSEngine::DeleteDictionary() function.

// Clearing and deleting a dictionary
pEngine->ClearDictionary(pszMyDictName);
pEngine->UpdateDictionary(pszMyDictName, pszMyDictionaryUpdate);
…
pEngine->DeleteDictionary(psz8MyDictName);

Changing Search Order

An application can change the order in which its custom dictionaries are searched by changing the weight of a
dictionary. Increasing the weight will move the dictionary closer to the beginning of the list. Decreasing the
weight will move it closer to the end of the list. Dictionary weights are set when the dictionary is created, and
can be modified later with the CTTSEngine::ChangeDictionaryWeight() function.

// Change search order
pEngine->CreateDictionary((PCUTF8String)”Dict1”, 5, 0);
pEngine->CreateDictionary((PCUTF8String)”Dict2”, 5, 1);
// Current search order is dict2 (weight 1) followed by dict1 (weight 0)
pEngine->ChangeDictionaryWeight((PCUTF8String)”Dict1”, 2);
// New search order is dict1 (weight 2) followed by dict2 (weight 1)

6.13. Optional Operating System Specific Classes

There are some classes defined that an application may use if desired.

CTTSWin32AudioPlayer

A Win32 audio player class is provided and used by the TTSDesktopPlayer application. It plays audio using the
Microsoft WAVE API.

CTTSWin32AudioWriter

A Win32 RIFF WAVE file writer class is provided and used by the TTSDesktopFile application. It will write .WAV
files for an application.

CTTSUnixAudioPlayer

A LINUX audio player class is provided and used by the TTSClientPlayer application.

CTTSUnixAudioWriter

A UNIX audio writer class is provided and used by the TTSClientFile class. It writes audio out to raw files.

Page 26 of 37

7. SSML Control Tags

The AT&T Natural Voices TTS engine does a great job of synthesizing most text without special
instructions, but there may be special circumstances where you wish to fine-tune the pronunciation of
certain words or phrases. The AT&T Natural Voices TTS engine allows users to mark up the text to be
spoken to include special control tags that change the way the text is pronounced. The AT&T Natural
Voices TTS engine supports a subset of the SSML control tags and adds a few extras. Not all tags are
supported in all languages. Control tags as case-insensitive.

XML Tag US ES

<ATT_Ignore_Case> Yes Yes

<speak> text </speak> Yes Yes

<speak xml:lang=”en_us”> text </speak> Yes Yes

<paragraph> text </paragraph> Yes Yes

<p> text </p> Yes Yes

<sentence> text </sentence> Yes Yes

<s> text </s> Yes Yes

<say-as type=”ATT_Literal”> text </say-as> Yes No

<say-as type=”ATT_Math”> text </say-as> Yes No

<say-as type=”ATT_Measurement”> text </say-as> Yes No

<say-as type=”acronym”> text </say-as> Yes No

<say-as type=”number”> text </say-as> Yes Yes

<say-as type=”number:ordinal”> text </say-as> Yes Yes

<say-as type=”number:digits”> text </say-as> No No

<say-as type=”date”> text </say-as> Yes Yes

<say-as type=”date:dmy”> text </say-as> No No

<say-as type=”date:mdy”> text </say-as> Yes Yes

<say-as type=”date:ymd”> text </say-as> No No

<say-as type=”date:ym”> text </say-as> No No

<say-as type=”date:my”> text </say-as> Yes Yes

<say-as type=”date:md”> text </say-as> Yes Yes

<say-as type=”date:y”> text </say-as> Yes No

<say-as type=”date:m”> text </say-as> Yes Yes

<say-as type=”date:d”> text </say-as> No No

<say-as type=”time”> text </say-as> Yes No

<say-as type=”time:hms”> text </say-as> Yes No

<say-as type=”time:hm”> text </say-as> Yes No

<say-as type=”time:h”> text </say-as> Yes No

<say-as type=”duration”> text </say-as> No No

<say-as type=”duration:hms”> text </say-as> No No

<say-as type=”duration:hm”> text </say-as> No No

<say-as type=”duration:h”> text </say-as> No No

Page 27 of 37

<say-as type=”duration:m”> text </say-as> No No

<say-as type=”duration:s”> text </say-as> No No

<say-as type=”currency”> text </say-as> Yes Yes

<say-as type=”telephone”> text </say-as> Yes No

<say-as type=”name”> text </say-as> Yes Yes

<say-as type=”net”> text </say-as> Yes Yes

<say-as type=”net:email”> text </say-as> Yes Yes

<say-as type=”net:url”> text </say-as> Yes Yes

<say-as type=”address”> text </say-as> Yes Yes

<say-as sub=”sub”> text </say-as> Yes Yes

<phoneme alphabet=”att_darpabet_english” ph=”phonemes”>
orthography </phoneme>

Yes No

<phoneme alphabet=”att_sampa_spanish” ph=”phonemes”>
orthography </phoneme>

No Yes

<emphasis> text </emphasis> No No

<voice gender=”male, female, neutral” >…</voice> Yes Yes

<voice age=“integer” >…</voice> Yes Yes

<voice category=“child, teenager, adult, elder” >…</voice> Yes Yes

<voice variant>…</voice> No No

<voice name=”mike8, crystal16, rosa8, etc”>…</voice> Yes Yes

<break/> Yes Yes

<break size=“none, small, medium, large” /> Yes Yes

<break time=”integer”/> Yes Yes

<prosody pitch=”high, medium, low, default”> … </prosody> No No

<prosody contour=”…”> … </prosody> No No

<prosody range=”…”> … </prosody> No No

<prosody rate=”fast, medium, slow, default” > … </prosody> Yes Yes

<prosody duration=”…”> … </prosody> No No

<prosody volume=”silent, soft, medium, loud, default” > … </prosody> Yes Yes

<!ENTITY … !> No No

Audio No No

Mark Yes Yes

Page 28 of 37

ATT_Ignore_Case

Tag tells the TTS engine to ignore the capitalization of words within the specified context. This mode is
useful to override the default behavior which is to spell all capitalized words.

Syntax: <ATT_IGNORE_CASE> text </ATT_IGNORE_CASE>
Example: <ATT_ignore_case> THIS CONTRACT </ATT_ignore_case>
Note: Pronounced as “this contract”

Break

The tag instructs the TTS engine to insert a pause in the synthesized text in one of three ways.

Syntax #1: <BREAK/>
Example: Time for a pause <Break/> Okay, keep going.
Note: Inserts a brief break after the word “pause”.

Syntax #2: <BREAK Size=”none | small | medium | large”/>
Example: No time for a pause <Break size=”none”/> Keep going.
Note: Inserts no break after the word “pause”.
Example: Time for a pause <Break size=”medium”/> Okay, keep going.
Note: Inserts a brief silence, the equivalent of the silence following a sentence, after the word “pause”.
Example: Time for a pause <Break size=”large”/> Keep going.
Note: Inserts only the default break after the word “pause”.
Example: Time for a pause <Break size=”medium”/> Okay, keep going.
Note: Inserts the equivalent of a paragraph break of silence after the word “pause”.

Syntax #3: <BREAK time=” duration ”/>
Example: Break for 100 milliseconds <Break time=”100ms”/> Okay, keep going.
Note: Inserts 100 milliseconds of silence after the word “milliseconds”.
Example: Break for 3 seconds <Break time=”3s”/> Okay, keep going.
Note: Inserts 3 seconds of silence after the word “seconds”.

Mark

The application may insert a user bookmark in the text. The TTS Engine will optionally inform the
application via a notification when that bookmark is reached in audio stream. Any number of bookmarks
may be inserted anywhere in the text.

Syntax: <Mark Name=”text_label”/> text
Example: The quick <Mark Name=”mark 1”/> fox jumped over the lazy <Mark Name=”mark 2”/> dog.
Note: The TTS engine will provide a notification just before speaking the word “fox” and another
notification just before speaking the word “dog”.

Paragraph

This tag tells the TTS engine to change the prosody to reflect the end of a paragraph, regardless of the
surrounding punctuation.

Syntax: <PARAGRAPH> text </PARAGRAPH> or <P> text
Example: <P> The paragraph tag can be abbreviated as just the letter P.
Note: The TTS engine changes the prosody to reflect the paragraph boundaries.

Phoneme

Page 29 of 37

This tag allows the user to specify pronunciations explicitly in the input text. Including the orthography, i.e.
the word or words represented by the phonemes, are optional, but recommended, because some
modules in the front end depend on orthography. The pronunciations must be represented using the
DARPA or SAMPA phoneme set when using the AT&T Natural Voices TTS Client SDK. Complete
description of the DARPA and SAMPE phoneme sets is later in this manual.

Syntax: <PHONEME alphabet=”att_darpabet_english” ph=” phoneme

+
 “/>

Syntax: <PHONEME alphabet=”att_sampa_spanish” ph=” phoneme
+
 “> orthography </PHONEME>

Example: <Phoneme alphabet=”att_darpabet_english” ph=”b ow t 1”/>
Example: <Phoneme alphabet=”att_sampa_english” ph=”b ow t 1”/>
Example: <Phoneme alphabet=”att_sampa_spanish” ph=”p a 1 D r e”> padre </Phoneme>

Prosody

We support only the Rate and Volume attributes of the SSML Prosody tag. The Pitch and Contour tags
are not supported.

Prosody > Rate

The Rate attribute of the Prosody tag changes the rate at which the text is spoken. You can specify either
the absolute rate or a relative change in the current speaking rate. This release supports a range of up to
eight times faster or slower than the default speed.

Syntax: <PROSODY RATE=”fast | medium | slow | default”> content </PROSODY>
Syntax: <PROSODY RATE=” RelativeChange “> text </PROSODY>
Note: This changes the speaking rate which is expressed in Words per Minute (WPM). RelativeChange
is a floating point number that is added to the current rate. Using a RelativeChange < 0 decreases the
speed.
Example: This is the default speed <prosody rate=”slow”> this is speaking slowly <prosody rate=”fast”>
this is speaking fast </prosody> back to slow </prosody> back to the default rate.
Example: This is the default speed <prosody rate="-50%"> this is 50% slower <prosody rate="+100%">
this is 50% faster than normal </prosody> back to 50% slower </prosody> back to the default rate.

Prosody > Volume

The Volume attribute of the Prosody tag allows the application to change the volume of the TTS voice.
Note that this does not change the volume of the output device, but it does raise or lower the volume of
the text spoken within the context of the tag.

Syntax: <PROSODY VOLUME=” level “> text </PROSODY>
Note: Level is a value from 0.0 to 200.0. A value of 100 is the voice’s default volume, a value of 0 changes
the volume to 0 and a value of 200 doubles the volume. The volume changes linearly.
Syntax: <PROSODY VOLUME=” silent | soft | medium | loud | default “> text </PROSODY>
Syntax: <PROSODY VOLUME=” delta “> text </PROSODY>
Example: This is the default volume <prosody volume="silent"> silence </prosody> <prosody
volume="soft"> Now I'm whispering </prosody> <prosody volume="+20%"> a little louder </prosody>
<prosody volume="medium"> medium volume</prosody> <prosody volume="+20%"> a little louder
</prosody> <prosody volume="loud"> very loud </prosody> <prosody volume="default"> back to default
volume </ prosody>.

Say-As

Say-As tags provide contextual hints to the TTS engine about how text should be pronounced. The TTS
engine supports a number of different contexts that can be used to fine-tune the pronunciation of words.

Page 30 of 37

Say-As > Acronym

The Acronym context tells the TTS engine to treat the text as an acronym and to pronounce the text as
the letters in the words. This tag is especially useful if your text is mostly upper case and you use the
ATT_Ignore_Case tag but then encounter an acronym.

Syntax: <SAY-AS Type=”Acronym”> text </SAY-AS>
Example: MADD <Say-as type=”acronym”> MADD </Say-as>
Note: Pronounced as “mad M-A-D-D”.

Say-As > Address

The Address context tells the TTS engine to treat the text as an address.

Syntax: <SAY-AS Type=”Address”> text </SAY-AS>
Example: <Say-as Type=”Address”> 123 Main St. , New York, NY 10017 </Say-as>
Note: Will be pronounced “one twenty three main street, New York, New York one zero zero one seven”

Say-As > ATT_Literal

The ATT_Literal context instructs the TTS engine to pass the string through literally without applying
additional context processing such as abbreviations, addresses, dates, math symbols, measurements,
names, numbers, times, or phone numbers.

Syntax: <SAY-AS Type=”ATT_Literal”> text </SAY-AS>
Example: <Say-as type=”ATT_Literal”> misc. </Say-as> misc.
Note: Pronounced as “misk miscellaneous”

Say-As > ATT_Math

The ATT_Math context tells the TTS engine to treat the text as a mathematical expression.

Syntax: <SAY-AS Type=”ATT_Math”> text </SAY-AS>
Example: <Say-as Type=”ATT_Math”> 3+4=7 </Say-as> 3+5=8
Note: Pronounced as “three plus four equals seven three plus sign five equal sign eight”

Say-As > ATT_Measurement

The ATT_Measurement context tells the TTS engine to treat the text as a measurement, e.g. single
quotes are pronounced “feet” and double quotes are pronounced “inches”.

Syntax: <SAY-AS Type=”ATT_Measurement”> text </SAY-AS >
Example: <Say-as Type=”ATT_Measurement”> 5’ 3” </Say-as> 7’ 9”
Note: Pronounced as “five feet three inches seven single quote nine double quote”

Say-As > Currency

The Currency context tells the TTS engine to treat the text as currency and expand $ and decimal
numbers appropriately. The Currency Context works only with US currency and not other currencies.

Syntax: <SAY-AS Type=”Currency”> text </SAY-AS>
Example: <Say-as Type=”Currency”> $25.32 </Say-as>
Note: Pronounced as “twenty five dollars and thirty two cents”

Say-As > Date

Page 31 of 37

The Date context tells the TTS engine to treat the text as date. You may also add qualifiers to provide
even more information to the TTS engine but in general the extra qualifiers are not needed.

Syntax: <SAY-AS Type=”Date”> text </SAY-AS>
Example: <Say-as Type=”Date”> Dec 25, 2001 </Say-as>
Note: Pronounced as “December twenty fifth two thousand one”
Syntax: <SAY-AS Type=”Date:M”> text </SAY-AS>
Example: <Say-as Type=”Date:M”> Dec </Say-as>
Note: Pronounced as “December”
Syntax: <SAY-AS Type=”Date:MD”> text </SAY-AS>
Example: <Say-as Type=”Date:MD”> Dec 25</Say-as>
Note: Pronounced as “December twenty fifth”
Syntax: <SAY-AS Type=”Date:MDY”> text </SAY-AS>
Example: <Say-as Type=”Date:MDY”> Dec 25, 2001 </Say-as>
Note: Pronounced as “December twenty fifth two thousand one”
Syntax: <SAY-AS Type=”Date:MY”> text </SAY-AS>
Example: <Say-as Type=”Date:MY”> Dec, 2001 </Say-as>
Note: Pronounced as “December two thousand one”
Syntax: <SAY-AS Type=”Date:Y”> text </SAY-AS>
Example: <Say-as Type=”Date:Y”> 2001 </Say-as>
Note: Pronounced as “two thousand one”

Say-As > Name

AT&T Natural Voices TTS engine does a great job on names without XML tags but you can tell the engine
to expect an name with the SAY-AS name tag.

Syntax: <SAY-AS Type=”Name”> text </SAY-AS>
Example: <Say-as Type=”Name”> Mark Beutnagel </Say-as>
Note: Pronounced as “Mark Beutnagel”

Say-As > Net

The Net type tells the engine to expect either an email address or a URL.

Syntax: <SAY-AS Type=”Net”> text </SAY-AS>
Example: <Say-as Type=”Net”> help@naturalvoices.att.com </Say-as>
Note: Pronounced as “help at natural voices dot ATT dot com”
Example: <Say-as Type=”Net”> http://naturalvoices.att.com </Say-as>
Note: Pronounced as “H T T P natural voices dot ATT dot com”
Syntax: <SAY-AS Type=”Net:email”> text </SAY-AS>
Example: <Say-as Type=”Net:email”> help@naturalvoices.att.com </Say-as>
Note: Pronounced as “help at natural voices dot ATT dot com”
Syntax: <SAY-AS Type=”Net:URL”> text </SAY-AS>
Example: <Say-as Type=”Net:URL”> help@naturalvoices.att.com </Say-as>
Note: Pronounced as “help at natural voices dot ATT dot com”

Say-As > Number

The Number type tells the engine to expect a number.
Syntax: <SAY-AS type=”Number”> text </SAY-AS>
Example: <Say-as type=”Number”> 10,243 </Say-as>
Note: Pronounced as “ten thousand two hundred forty three”
Syntax: <SAY-AS type=”Number:Decimal”> text </SAY-AS>
Example: <Say-as type=”Number:decimal”> 3.14159 </Say-as>
Note: Pronounced as “three point one four one five nine”

Page 32 of 37

Syntax: <SAY-AS type=”Number:Fraction”> text </SAY-AS>
Example: <Say-as type=”Number:Fraction”> 5 3/4 </Say-as>
Note: Pronounced as “five and three fourths”
Syntax: <SAY-AS type=”Number:Ordinal”> text </SAY-AS>
Example: <Say-as type=”Number:ordinal”> VI </Say-as>
Note: Pronounced as “sixth”

Say-As > Sub

The SUB tag allows you to substitute spoken text for the written text.

Syntax: <SAY-AS sub=”spoken”> text </SAY-AS>
Example: <Say-as sub=” Mothers Against Drunk Driving”> MADD </Say-as>
Note: Pronounced as “mothers against drunk driving”

Say-As > Telephone

The Telephone context tells the TTS engine to treat the text as a telephone number.

Syntax: <SAY-AS type=”Telephone”> text </SAY-AS>
Example: <Say-as type=”telephone”> (212)555-1212 </Say-as>
Note: Pronounced as “two one two five five five one two one two”

Say-As > Time

The Time context tells the TTS engine to treat the text as a time.

Syntax: <SAY-AS Type=”Time”> text </SAY-AS>
Example: <SAY-AS type=”Time”> 12:34 PM </SAY-AS>
Note: Pronounced as “twelve thirty four P M”
Syntax: <SAY-AS Type=”Time:HMS”> text </SAY-AS>
Example: <SAY-AS type=”Time”> 12:34:56 PM </SAY-AS>
Note: Pronounced as “twelve thirty four and fifty six seconds P M”
Syntax: <SAY-AS Type=”Time:HM”> text </SAY-AS>
Example: <SAY-AS type=”Time”> 12:34 PM </SAY-AS>
Note: Pronounced as “twelve thirty four P M”
Syntax: <SAY-AS Type=”Time:H”> text </SAY-AS>
Example: <SAY-AS type=”Time”> 12 PM </SAY-AS>
Note: Pronounced as “twelve P M”

Sentence

This tag tells the TTS engine to change the prosody to reflect the end of a sentence, regardless of the
surrounding punctuation. The TTS engine changes the prosody to reflect the sentence boundaries.

Syntax: <SENTENCE> text </SENTENCE> or <S> text </S>
Example: <Sentence> This text is a sentence. </Sentence>
Example: <S> The sentence tag can be abbreviated as just the letter S. </S>

Speak

The SPEAK tag tells the TTS engine to synthesize the specified text. You need not include this tag to
have your text synthesized.

Syntax: <SPEAK> text </SPEAK>
Example: <Speak> This text is synthesized. </Speak>

Page 33 of 37

Note: Pronounced as “this text is synthesized.”

Voice

The Voice tag allows the application to change the voice of the TTS speaker from the input text. You can
use this feature to change voices, e.g. you might use different voices to speak different sections of an
email message or carry on a conversation between two different voices. The default voice for a server is
specified when the server process is started. You choose a voice by specifying one or more of the
following attributes:

Gender: male, female, or neutral
Age: an integer value, e.g. 30
Category: child, teen, adult, or elder
Name: mike8, crystal8, rosa16, rich16, or any other voices you’ve installed.
Language: “en_us” “English” for US English

“es_us” or “Spanish” for Spanish

You can specify several attributes but in the current release it is best to specify the speaker by name. You
can purchase additional voices which may make more use of the additional attributes. Note that switching
voices forces the server to load the data files for the each voice that is specified which may result in
noticeable delays. Voice switches will happen instantaneously once the voice data is in place.

Syntax: <VOICE Gender=”male | female | neutral” Age=”integer” Category=”child | teen | adult | elder”
Language=”en_us | …” Name=”mike8 | …” </VOICE>
Example: <Voice Name=”mike8”> Hi, I’m Mike </Voice>
Note: Pronounced as “Hi, I’m Mike” using Mike’s 8 KHz voice.
Example: <Voice Name=”crystal8”> I’m Crystal </Voice>
Note: Pronounced as “I’m Crystal” using Crystal’s 8 KHz voice.
Example: <Voice Name=”rosa8”> Hola, me llamo Rosa </Voice>
Note: Pronounced as “Hola, me llamo Rosa” using Rosa’s 8KHz voice.
Example: <voice name=”mike16”> This is Mike <Voice Name=”crystal16”> This is Crystal </voice> This is
Mike again. </voice>
Note: Pronounced as: in Mike’s voice “This is Mike”, then in Crystal’s voice, “This is Crystal”, then in
Mike’s voice, “This is Mike again”.

Page 34 of 37

8. Custom Dictionaries

The AT&T Natural Voices TTS engine allows you to define custom dictionaries that change the default
pronunciation of words. The AT&T Natural Voices TTS engine does a great job pronouncing most words and
even most names correctly but there are some words that it doesn’t get quite right. Custom dictionaries allow you
to change pronunciations of words for your users or application.

When searching for a transcription, the TTS Server first searches custom dictionaries and then its own
internal dictionaries to find some pronunciation for the word. The search stops as soon as a pronunciation
is found.

Defining Custom Pronunciations

The first step in building custom dictionaries is to define new pronunciations for words or phrases using
the DARPA phonemes for English or the SAMPA phonemes for all other languages. Finding just the right
set of phonemes to make a word can be tricky. To find word that sounds like the word you wish to say,
experiment using the SSML <PHONEME> tag.

For example, say that you want the TTS engine to say “toe MAH toe” rather than “toe MAY toe”.

<pron sym=" t ow m ey 1 t ow" /> is pronounced “toe MAY toe”
<pron sym=" t ow m aa 1 t ow" /> is pronounced “toe MAH toe”

Adding stress marks can also help the TTS engine pronounce the word the right way. You can specify
that phonemes should be unstressed (0), have primary (1) or secondary stress (2), e.g.
<pron sym=”f ax 0 n aa 1 m aa 0 n aa n 2”> phenomenon </pron>.

Finding the proper set of phonemes to say a word in just the right way can be challenging. A colleague
with expertise in linguistics is a great resource for this problem. The TTS engine does not expose the
system lexicon to applications.

Adding Custom Pronunciations to a Dictionary File

Once you have defined your words and their pronunciations, you need to put them into a dictionary. A
Dictionary is a flat text file which holds one or more “word { phonemes }” combinations. It is a good idea to
maintain the same file extension (we suggest .dict) for all your custom dictionaries and keep those files
in the directory according to the following table:

Following is an example of custom dictionary file:

DOS {d ao s 0}
forget { f er 0 g eh t 1 }
linux { l ih n 1 ax k s }

Language Directory Configuration File

US English <INSTALL_DIR>/data/en_us en_us.cfg

Spanish <INSTALL_DIR>/data/es_us es_us.cfg

Page 35 of 37

Letting TTS Engine Accept Your Custom Dictionary

Locate a language model configuration file (last column from the table in previous paragraph). This is how
typical English language model configuration file looks like:

Language en_us
LanguageLocale en_us
LanguageDictionary ../data/en_us/en_us.dict att_darpabet_english
LanguageTextAnalysis ../lib/ft_en_us.so
TextAnalysisLoad dynamic

To use a dictionary file new_custom_dictionary.dict, add a new line as follows:

Language en_us
LanguageLocale en_us
LanguageDictionary ../data/en_us/en_us.dict att_darpabet_english
LanguageTextAnalysis ../lib/ft_en_us.so
UserDictionary ../data/en_us/new_custom_dictionary.dict
TextAnalysisLoad dynamic

Save the file. The TTS engine will use the transcriptions in new_custom_dictionary.dict.

Page 36 of 37

9. Phonetic Alphabets

DARPA US English Phonetic Alphabet [att_darpabet_english]

--
Phoneme Example Transcription
----------- ----------- ----------------
Aa Bob b aa b 1
Ae bat b ae t 1
Ah but b ah t 1
Ao bought b ao t 1
Aw down d aw n 1
Ax about ax 0 b aw t 1
ay bite b ay t 1
b bet b eh t 1
ch church ch er ch 1
d dig D ih g
dh that dh ae t 1
dx butter b ah 1 dx er 0
eh bet b eh t 1
em Chatham ch ae 1 dx em 0
en satin s ae 1 q en 0
er bird b er d 1
ey bait b ey t 1
f fog f ao g 1
g got g aa t 1
hh hot hh aa t 1
ih bit b ih t 1
iy beat b iy t 1
jh jump jh ah m p 1
k cat k ae t 1
l lot l aa t 1
m Mom m aa m 1
n nod n aa d 1
ng sing s ih ng 1
ow boat b ow t 1
oy boy b oy 1
p pot p aa t 1
q button b ah 1 q en 0
r rat r ae t 1
s sit s ih t 1
sh shut sh ah t 1
t top t aa p 1
th thick th ih k 1
uh book b uh k 1
uw boot b uw t 1
v vat v ae t 1
w won w ah n 1
y you y uw 1
z zoo z uw 1
zh measure m eh 1 zh er 0
----------- ----------- ----------------
0 Unstressed
1 Primary stress
2 Secondary stress
& Word boundary
pau Silence
--

Page 37 of 37

SAMPA Spanish Phonetic Alphabet [att_sampa_spanish]

--
Transcription Phoneme Example
------------------------ ----------- -------------
a 1 g w a 0 a agua
e s 1 t e 0 e este
i 0 g w a l 1 i igual
o 1 s o 0 o oso
u 1 b e 0 u uve

o j 1 g o 0 j oigo
f w e 1 r a 0 w f w e 1 r a 0

p a r 1 t e 0 p parta
t o 1 m a 0 t toma
k o 0 x e r 1 k coger
b a 1 k a 0 b vaca
k a 1 d a 0 d cada
a 0 g a 1 l o 0 g hagalo

f l a 1 k o 0 f flaco
s i 1 s si
x e n 1 t e 0 x gente

k o 1 tS e 0 tS coche
a 0 jj e r 1 jj ayer
jj a 1 b e 0 jj llave
m i 1 jj a 0 jj milla

m a 1 n o 0 m mano
n a 1 d a 0 n nada
e s 0 p a 1 J a 0 J españa

l o 1 k o 0 l loco
p e 1 r o 0 r pero
p e 1 rr o 0 rr perro
--

